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Abstract

Strain gauges are often more advantageous for experimentally analyzing linear dynamic structures due to their lightweight 

and use for understanding the material response of these structure to external loading. Presented in this paper is an alternative 

approach to traditional approaches in structural dynamics. The theoretical presentation will describe a practical 

implementation of a technique using strain data to recover the modal participation factors for linear dynamic analysis.
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Introduction

Presented here is an approach to derive the modal participation factors of a structure directly from strain gauge 

measurements.  Calculation of the response of structures undergoing external excitation can be approximated using thee 

theory of modal superposition.  The dynamic responses of flexible structures result in strain on the structure.  Strain signals 

can be measured during the dynamic event.  These strains may be projected onto the strains of the individual mode shapes of 

the structure.  The projection of the experimentally measured strains onto the modal strains will result in a scalar indicating 

the participation of the individual mode in the dynamic response.  If this is done for a sufficient number of modes in the 

structure, then the total response may be reconstructed using modal superposition.

Theory

The basic theory in dynamic modal analysis is based upon the N-DOF equation of motion [1]:

M Ẍ+K X=F (t ) (1)

If the response is assumed to be harmonic, the general form of the response may be written as:

X=ψe
iω t

(2)

Expanding this assumption into the equation of motion and solving the homogeneous equation yields the eigenvalue problem:

[	M ω2+K ] ψ={0} (3)

From equation 3, ω is the natural frequencies of the structure and ψ represents the mode shapes.

The particular solution to equation 1 is assumed to be of the form:

X ( t )=ψ{z (t )} (4)

The vector of functions, z(t), are the scaling functions for each of the mode shapes, ψ, which satisfy equation 1.  Through 

application of the properties of orthogonality, the spatial 2nd order differential equation 1 can be rewritten in modal terms as:



M̃ z̈+K̃ z=F̃ (t ) ,where
M̃=ψT

M ψ(modal mass)

K̃=ψT
K ψ(modal stiffness)

F̃=ψT
F ψ(modal force)

(5)

The properties of equation 5 are such that there are n decoupled 2nd order differential equations, where n is the number of 

mode shapes [1].  The 2nd order differential equations can be solved for z(t) using standard closed form techniques or 

numerical techniques such as Runge-Kutta.  The functions, z(t), will be the set of scaling functions for each of the mode 

shapes.  These are commonly known as modal participation functions (MPF).  The total response of the structure due to 

externally applied forces, F(t), is then given by:

X ( t)=∑
i=1

n

ψi∗z i(t) (6)

Problem Formulation

The approach presented here will leverage the basic concepts known as influence coefficients [2].  The overall concept comes 

from the linear mechanics relationship as illustrated below:

Fig. 1:  Linear mechanics relationship

This relationship may be expressed mathematically as:

[F ]=[K ] [X ] (7)

and

[ε] [C ]=[F ] (8)

In equation 7, the set of displacement vectors [X] represent the deflection due to the set of applied forces.  In the special case 

of dynamics, the applied forces could be the modal inertia loading of the structure.  The resulting deflection would be the 

mode shapes as calculated from equation 3.  In standard finite element analysis (FEA), these deflections would be the mode 

shape results.  The FEA solution would also yield the corresponding strain due to the deflection of the mode shapes.  

Equation 8 implies that there is a unique relationship between each mode shape and the corresponding strain field.  The set of 

mode shapes can be represented as the identity matrix [I] with the size of n modes by n modes.  Equation 8 may be rewritten 

as:

[ε] [C ]=[ I ] (9)

Equation 9 may readily be solved for [C] by:

[C ]=[εT ε]	1εT (10)

The reader may recognize this as the standard expression for least square fit [3].  A search algorithm is deployed to find a 

subset of the strain field (e.g. strain gauge locations) that maintain a robust and stable C matrix.  The key is to find strain 

gauge locations that guarantee that the inverse in equation 10 is well defined.  This is done by recognizing that an inverse of a 

matrix can be calculated by dividing the adjoint of the matrix (matrix of cofactors) by the determinant of the matrix [4] as 

shown in equation 11:



A
	1=

adj (A)

∣A∣
(11)

The strain gauges are then found subject to the objective function in equation 12 to ensure the most stable possible expression 

for the correlation matrix, C.

∣εT ε∣→max (12)

If the strain gauges are laid based upon the strain fields from analytical mode shapes for the structure, it will now be possible 

to understand the participation of the mode shapes in the overall structural response.  This will be done by simply multiplying 

the strains from test measurements by the correlation matrix extracted from the FEA mode shapes via equation 13.

{εtest }∗[C ]=[FMPF ] (13)

Expanding equation yields:

[
εt1 , g1 εt1 , g2 εt1 , g3 ⋯ εt1 , gm
εt2 , g1 εt2 , g2 εt2 , g3 ⋯ εt2 , gm
⋮ ⋮ ⋮ ⋱ ⋮

εtend , g1 εtend , g2 εtend , g3 ⋯ εtend , gm
][C ]={

F t1 , mode1 F t1 ,mode2 ⋯ F t1 ,mode n

F t2 , mode1 F t2 ,mode 2 ⋯ F t2 ,mode n

⋮ ⋮ ⋱ ⋮
F tend ,mode1 F t end , mode2 ⋯ F t end , moden

} (14)

Case Studies

To test this concept, a fully analytical study will be performed.  Two cases are presented.   The first case is a cantilever beam 

under going sinusoidal excitation.  The second case will be a prototypical motorcycle headlamp undergoing complex base 

excitation.

Cantilever Beam

An aluminum cantilever beam of dimensions 10 inches x 2 inches x 0.1 inches is fixed at one end.  The natural frequencies 

are calculated using Abaqus FEA software.  The natural frequencies are compared to hand calculation from Roark [5].  The 

comparison of natural frequency is shown below:



Fig. 2:  Frequencies, Mode Shapes Cantilever Beam

Note that the formulas from Roark only calculate the in-plane bending modes.  The Roark calculations do not accommodate 

the out of plane bending or torsion modes of the beam.  In this case the 3rd and 5th modes are out of plane torsion and bending 

modes.

A series of strain gauge locations are chosen in order to be sensitive to the 5 mode shapes shown in figure 3.  Ten strain 

gauges were chosen in order to provide a robust relationship between strain data and the mode shapes.



Fig. 3:  Gauge placement, cantilever beam

The FEA Model was excited by a 35 hz sine wave with the amplitude of 0.1 lbf.  The point of excitation is the center of the 

free end of the beam as shown in figure 4.

Point of load application, F= 0.1 lbf Load scaling function

Fig. 4:  Load and forcing function for cantilever beam

The strain data was collected at the indicated strain gauge locations.  These strains were then projected onto the correlation 

matrix, [C].  The resulting participation functions are plotted along with the calculated modal participation functions from the 

FEA modal response analysis.  These theoretical and experimentally calculated from strain MPFs are shown in figure 5.  The 

red curves are the modal participation functions from the Abaqus FEA analysis.  The curves represented by hollow blue 

circles are the modal participation functions calculated from the strain data.  There is excellent correlation for all modes 

except modes 3 and 5.  Looking at the MPF factors for modes 3 and 5, they have an overall magnitude on the order of 1E-15.  

This is well beyond the precision of the strain data provided for the reconstruction of the MPF signals.



All MPF MPF – Mode 1 MPF – Mode 2

MPF – Mode 3 MPF – Mode 4 MPF – Mode 6

Fig. 5:  Modal participation factors, FEA and Strain based

These modal participation functions were used to reconstruct the strain at the gauge locations for another method of 

correlation.  Figure 6 shows the strain plots resulting form the linear superposition.  The green curves represent the 

“measured” strain signal from the forced response FEA analysis.  The blue curves represent the reconstructed strain response 

using the experimentally created loading modal participation functions.  These curves are line on line with zero percent error 

between the “measured” strain data and the simulated strain data from the reconstructed MPFs.

Fig. 6:  Strain correlation, cantilever beam



Prototypical Motorcycle Headlamp

Similar to the cantilever beam case study, the headlamp being modeled here will be solved for 5 modes.  Strain gauges will 

be placed in such a fashion as to robustly capture the modal response.  The mode shapes are shown in figure 7.  The strain 

gauge placement is shown in figure 8.

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Base excitation functions (G's)

Fig. 7:  Headlamp mode shapes and base excitation functions



Fig. 8:  Strain Gauge Placement, headlamp

A set of strain signals was generated at the strain gauge locations shown in figure 8.  The strain signals are the result of the 

base excitation by the forcing functions shown in figure 7.  These strain signals will simulate a test data collection of the 

headlamp structure in operation.  These strain signals were then used to re-construct the modal participation functions.  The 

comparison of the analytical modal participation functions from FEA to the modal participation functions calculated from the 

strain signals.  The MPF signals from FEA are plotted in red, and the MPF signals calculated from strain are shown as blue 

hollow circles in figure 9.

All Modal Participation Functions MPF Mode 1 MPF Mode 2

MPF Mode 3 MPF Mode 4 MPF Mode 5

Fig. 9:  Modal participation factors, FEA and Strain based

The strain “measured” strain signals are plotted with the reconstructed strain signals from the MPF functions calculated from 

the strain data.  These are shown in figure 10.  The original strain signals are shown in green and the reconstructed strain 



signals are shown in blue.  Again, as in the case of the cantilever beam, the error between the “measured” strain data and the 

simulated strain data from the reconstructed MPFs is zero.

Fig. 10:  Strain correlation, headlamp

Conclusions / Discussion

Presented here is a practical approach for understanding dynamic displacement based upon strain gauge data.  This technique 

has the advantage of working with light weight strain gauges.  In addition, strain gauges are working directly with 

displacement domain data and can very accurately capture the flexural response of the structure.  An additional advantage of 

the technique is that it can be combined with quasi-static loading.  If the quasi-static loading includes unit perturbations of the 

connection degrees of freedom (DOF), then resulting MPF reconstruction will essentially be a Craig-Bampton response 

analysis.
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